
ar
X

iv
:2

50
5.

01
94

7v
1 

 [
cs

.S
E

] 
 3

 M
ay

 2
02

5

Runtime Anomaly Detection for Drones:
An Integrated Rule-Mining and

Unsupervised-Learning Approach

Ivan Tan, Wei Minn, Christopher M. Poskitt, Lwin Khin Shar, and
Lingxiao Jiang

Singapore Management University, Singapore
{ivantan,wei.minn.2023,cposkitt,lkshar,lxjiang}@smu.edu.sg

Abstract. Unmanned Aerial Vehicles (UAVs), commonly referred to as
drones, have witnessed a remarkable surge in popularity due to their
versatile applications. These cyber-physical systems depend on multiple
sensor inputs, such as cameras, GPS receivers, accelerometers, and gyro-
scopes, with faults potentially leading to physical instability and serious
safety concerns. To mitigate such risks, anomaly detection has emerged
as a crucial safeguarding mechanism, capable of identifying the physical
manifestations of emerging issues and allowing operators to take pre-
emptive action at runtime. Recent anomaly detection methods based on
LSTM neural networks have shown promising results, but three chal-
lenges persist: the need for models that can generalise across the diverse
mission profiles of drones; the need for interpretability, enabling oper-
ators to understand the nature of detected problems; and the need for
capturing domain knowledge that is difficult to infer solely from log data.
Motivated by these challenges, this paper introduces RADD, an integrated
approach to anomaly detection in drones that combines rule mining and
unsupervised learning. In particular, we leverage rules (or invariants)
to capture expected relationships between sensors and actuators dur-
ing missions, and utilise unsupervised learning techniques to cover more
subtle relationships that the rules may have missed. We implement this
approach using the ArduPilot drone software in the Gazebo simulator,
utilising 44 rules derived across the main phases of drone missions, in
conjunction with an ensemble of five unsupervised learning models. We
find that our integrated approach successfully detects 93.84% of anoma-
lies over six types of faults with a low false positive rate (2.33%), and
can be deployed effectively at runtime. Furthermore, RADD outperforms
a state-of-the-art LSTM-based method in detecting the different types
of faults evaluated in our study.

Keywords: Anomaly detection · Rule mining · Unsupervised learning

1 Introduction

In recent years, Unmanned Aerial Vehicles (UAVs), commonly known as drones,
have surged in popularity owing to their use in areas as diverse as aerial photog-

https://arxiv.org/abs/2505.01947v1


2 I. Tan et al.

raphy, construction inspection, and product delivery. These sophisticated and
complex cyber-physical systems (CPSs) are operated remotely with the help of
inputs from multiple sensors, including cameras, GPS receivers, accelerometers,
and gyroscopes, all of which the control software uses to determine appropriate
motor actuations. Failures in sensors and actuators (e.g. due to intentional sound
noise attacks [32]), and even environmental factors (e.g. strong wind [29]) can
impact the stability of a drone’s operation, which can lead to serious and some-
times life-threatening hazards. Detecting and diagnosing these faults accurately
and promptly is thus crucial to ensuring the safety and success of the drone and
its mission.

One approach for achieving this is anomaly detection, a commonly used tech-
nique for identifying behaviours that deviate significantly from the norm. In this
context, behaviours are inferred from logs of timestamped sensor readings and
actuator states, with anomalies defined as abnormal data points or sequences
within these logs. Anomaly detection systems for CPSs can be built in a num-
ber of different ways, but a particularly popular approach is to train a machine
learning (ML) model on historical data from the system. If labelled data is avail-
able, then supervised learning approaches like SVM can be used to train a model
that classifies new data points as normal or anomalous [8]. However, in drone
anomaly detection, labelled data is often unavailable due to the volatile nature
of anomalies and the substantial manual effort required for labelling, even when
anomalies are known. In the absence of labelled data, unsupervised approaches
like clustering [19], local outlier factor [16], and one-class SVM [17] can be used
to learn a decision boundary that encapsulates the normal data points. Deep
learning approaches, in which neural networks learn the complex non-linear pat-
terns in data sets, can also be used for anomaly detection by serving as time
series predictors, with the anomaly alarm raised when predicted physical states
differ significantly from the ones eventually observed [13,20, 21]. Anomalies can
also be detected by evaluating data points against rules (or invariants), in which
expected relationships between sensors and actuators are extracted from data
sets [12], control programs and the laws of physics [9], or alternatively, are defined
based on a priori knowledge [4, 34].

DronLomaly [30] has taken some first steps towards applying anomaly de-
tection techniques to drones, specifically, by utilising LSTM netural networks
to predict future sensor/actuator states and marking anomalies when the ac-
tually observed states diverge. Despite some promising results for three sets of
flight logs, there remain a number of challenges that are particularly pertinent
to drones. First is the risk of overfitting to the training data from sample fly-
ing logs. Models must be able to generalise, as no two missions are the same:
flying in an open field is different to flying in a crowded city, not to mention
the differences that arise due to weather. Second, some existing methods, such
as LSTM-based ones, lack interpretability, making it difficult for operators to
understand the nature of an anomaly and to decide what the appropriate action
is to take. Finally, drones are often required to satisfy properties that are simple
to define with domain knowledge but may not always be easily inferred from log



Runtime Anomaly Detection for Drones: An Integrated Approach 3

data. For example, regulations concerning speed and height restrictions, or ac-
ceptable lag between an operator issuing a command and the drone enacting it.
Therefore, we are motivated to explore alternative anomaly detection approaches
that overcome these specific challenges for drones.

In this paper, we propose RADD (Runtime Anomaly Detection for Drones), an
integrated approach to anomaly detection for drones that combines rule-checking
and unsupervised-based methods. First, we leverage rules (or invariants) to cap-
ture expected relationships between sensors and actuators throughout the main
phases of drone missions. Our rule sets are automatically mined from log data
using the Apriori algorithm, then complemented with additional custom rules
based on domain knowledge (e.g. acceptable latency). Second, we utilise an en-
semble of unsupervised models in order to be able to identify more subtle devia-
tions that the rules may have missed. If a rule is violated or (a majority of) the
ensemble reports an anomaly, then an anomaly is reported. By eschewing deep
neural networks for an integrated rule- and unsupervised-based approach, RADD
identifies anomalies across a wide range of missions and reports them along-
side the human-readable rules used for their detection, making the results more
understandable to users than in previous approaches.

We implemented RADD for the ArduPilot drone software [2] in the Gazebo
simulator [1], utilising 44 rules mined across the five main phases of generic drone
missions, as well as an ensemble of five unsupervised models (k-means, DBSCAN,
OPTICS, LOF, and SVM) that operate by majority vote. We evaluated the
approach against multiple datasets covering normal flights as well as multiple
faults, such as engine failures, sensor failures, and heavy wind. We found that
our integrated approach was able to detect an average of 93.84% of anomalies
over six types of faults with a low rate of false positives. RADD’s detection rate
rises to over 99% of anomalies for the specific cases of heavy wind and various
sensor faults. Furthermore, we found that RADD outperformed the baseline of
DronLomaly’s LSTM model [30], and in an ablation study, observed that our
approach requires both the rule- and unsupervised-based components to maintain
its high accuracy across missions in general. Finally, we observed that RADD was
efficient enough to be deployed at runtime and detect anomalies during missions.

The main contributions of our work include:

– The first anomaly detection technique for drones based on the integration of
rule-mining and unsupervised learning.

– An implementation for ArduPilot, including 44 rules defined over several
mission phases, and an ensemble of five unsupervised models.

– An experimental evaluation in which 93.84% of anomalies over six types of
faults (rising to over 99% for heavy wind and sensor faults) with a false
positive rate of 2.33%.

– An interpretability study evaluating RADD, where it achieved 6.6 out of 7 on a
Likert scale rating as compared to raw data (3.2) in terms of understanding
anomalies identified.

– A demonstration of the feasibility of verifying the absence of drone anomalies
at runtime using RADD.



4 I. Tan et al.

Fig. 1. Overview of a typical drone system

– Source code and datasets used for RADD, available at [3].

RADD’s integration of rules and unsupervised models addresses the challenges of
generalising across missions and capturing domain knowledge, while ensuring
that detected anomalies are accompanied by human-readable rules—enhancing
interpretability compared to state-of-the-art LSTM methods [30].

The rest of the paper is organised as follows. Section 2 provides background
on drones and the components of the simulation environment we used. Section 3
presents our approach. Section 4 presents our research questions, experiments,
and results. Section 5 discusses the related works on anomaly detection tech-
niques for drones and other cyber-physical systems. Finally, Section 6 concludes
the paper and discusses future work.

2 Background

In this section, we present some background on the structure of a typical drone
system, its logs, and our simulation environment.
Drone Setup and Logs. Typically, a drone system consists of a ground control
station (GCS), flight control program, sensors, and controllers. Figure 1 shows
a block diagram of a drone system.

The flight control program can be embedded in a small computing device
such as a Raspberry Pi. It is the heart of the system that controls the drone’s
movements and operations. It may operate autonomously through an autopilot
function for accomplishing a mission (e.g. flying along a preset flight path with
multiple waypoints) or by dynamic commands sent from the GCS via a commu-
nication protocol, e.g. via a MavLink (Micro Air Vehicle Link) message. It reads
data from sensors, such as the Global Positioning System (GPS), barometers,
accelerometers, gyroscopes, and thermometers, to detect the physical states of
the drone, and sends actuator commands to the physical controllers according to
the pre-programmed flight mission or the dynamic commands sent by the user
via the GCS. It may control multiple physical controllers, e.g. the z-axis con-
troller for movement along vertical direction, the x-axis and y-axis controllers
for movement along horizontal directions, and roll, pitch, and yaw controllers for
rotation.



Runtime Anomaly Detection for Drones: An Integrated Approach 5

Drones are subjected to extreme conditions including vibration, noise, and
environmental stresses. Ideally, sensors/actuators in drones should have high
shock survival capability and be fast enough to capture/withstand vibrations,
and sensors should be able to filter noise such as GPS signal interference. The
performance of sensors and actuators should not vary with changes in environ-
ment parameters such as temperature and humidity. When this is not the case,
failures or anomalies are said to occur. It is important to detect them in real
time so that an operator can take a corrective action promptly.

A majority of drones, especially industrial drones, log flight data during mis-
sions. This data typically includes the flight status, sensor readings, actuator out-
puts, and other information such as configuration parameter values. Behaviours
of the drone including anomalies can be inferred from such logs. These logs can
be accessed by a program embedded in the drone or in the GCS during runtime1.
Simulation Environment. To simulate the drones’ missions and gather the
log data, we used a combination of Ardupilot, Pymavlink, and Gazebo. Ardupi-
lot is an open-source control program for drones and other unmanned vehicles
that provides a range of features for controlling the flight of the vehicle, in-
cluding waypoint navigation, automated takeoff and landing, stabilisation, and
various flight modes. Pymavlink is a Python implementation of the MavLink
communication protocol, which is a lightweight messaging protocol designed for
communication between unmanned vehicles and their ground control stations.
The protocol provides a set of Python modules for encoding and decoding these
MAVLink messages, as well as tools for working with MavLink logs and perform-
ing simulations. The Gazebo Simulator is an open-source 3D robotics simulation
software widely used for testing and developing robotics algorithms and sys-
tems. It provides a high-fidelity physics engine that simulates the dynamics and
kinematics of robots and other objects in a virtual environment.

3 Our Approach

In this section, we present RADD (Runtime Anomaly Detection for Drones), a
new approach that integrates rule mining and unsupervised learning techniques
to detect and interpret anomalies across different drone mission profiles. First,
we propose segmenting generic drone missions into several key phases, which is
essential, as rule associations may differ across the phases. Second, we describe
our rule mining approach for drones, based on the Apriori algorithm. These rules
are complemented with additional custom rules based on domain knowledge
(e.g. acceptable latency between issuing a command and the drone acting on it).
Finally, we propose an ensemble of five unsupervised models to cover the gaps
missed by our rules, and explain how the rules and models can be used together
to check anomalies at runtime.

1 As a proof-of-concept and for our experiments, we developed a C/C++ program for
DJI drones and embedded it in a Raspberry Pi device attached to a DJI drone.



6 I. Tan et al.

Phases in a generic drone
mission 

Takeoff: In this phase, the drone is taking off and
attempting to reach the desired altitude 

Initialisation: In this phase, the drone is making
sense of mission parameters and has not taken
off yet 

Desired
Altitude

On Mission: In this phase, the drone is
carrying out its mission i.e. heading to
waypoints

Landing: In this phase, the drone is
descending to the ground 

Return to Origin: In this phase,
the drone is heading back to
the origin 

Waypoint 1 Waypoint2 

Note: Origin in Step 1 and Step 5 refer to the same point, depiction in the diagram is only done this way due to constraints when designing.

Fig. 2. Phases in a generic drone mission

Deriving the Mission Phases. Segmenting missions into general phases is
important for rule mining, because certain relationships between values in the
data logs only hold during certain parts of the mission.

For the case of ArduPilot, throttle while the drone is initialising (i.e. setting
up and registering the given parameters) would always be expected to be 0.
Unfortunately, phases are not defined in the logs of Ardupilot-controlled drones,
other than for a column called ‘MODE’ which has three possible values: Stabilise,
Auto and RTL (Return to Launch).

Thus, we propose five phases of a generic drone mission that can be inferred
from indicators in the logs. After observing a multitude of missions, we identified
five key phases that took place across all of them: Initialisation, Takeoff, On
Mission, Return to Origin, and Landing. A depiction of these phases can be seen
in Figure 2.

In the Initialisation phase, there is a period of time in which the drone
receives commands before taking off or starting a new mission from an airborne
point. During this time, the drone is essentially trying to make sense of the
mission parameters and waypoints it was given. Thus, we expect the same be-
haviour in this phase regardless of the particular mission, i.e. no climbing, and
no throttle, and thus an invariant range of values.

The Takeoff phase begins right after the mission parameters and config-
urations have been set. The drone will attempt to take off from the starting
position and reach the desired altitude of the mission. Once the desired altitude
is reached, the On Mission phase begins, in which the drone carries out most
of its mission, i.e. travelling via some set waypoints.



Runtime Anomaly Detection for Drones: An Integrated Approach 7

Table 1. Methodology used for deriving mission phases

Phase Conditions to check
INITIALISATION “MODE” in original drone logs is STABILISE
TAKEOFF “MODE” has changed to AUTO
ON MISSION Desired takeoff altitude has been reached
RETURN TO ORIGIN Last waypoint has been reached
LANDING Original/Desired Coordinates have been reached

Upon completing the mission, the drone moves into the Return to Origin
phase, in which it attempts to navigate back to its initial position, in the fastest
and most linear way possible. Finally, once its original position has been reached,
it will enter the Landing phase, in which it tries to safely descend to the ground.

Note that these phases are intended to be generic across different types of
drones and missions, and we cannot assume that the current phase is given
directly in the drone logs. Rather, the current phase is derived according to
some key indicators that are likely to be present. For example, we use the relative
altitude values to determine whether the drone is ready to transition from Takeoff
to On Mission. The indicators for each phase can be seen in Table 1.
Rule Construction. We implemented a form of association rule mining, the
outcome of which can be transformed into rules that can be checked at runtime
(i.e. Boolean expressions over sensor and actuator values). We classify these
mined rules into two types: universal rules, which should hold at any point of the
drone’s mission, and phase-specific rules, which should hold throughout one of
the five mission phases that were previously discussed. Finally, we complement
these with domain-specific rules based on domain expertise that may not be
implicit from logs.

For CPS logs, specifically drones, rules usually involve a certain kind of range,
due to the volatility of the values. We define these ranges based on the minimum
and maximum values in our datasets. For example, during takeoff, the roll (rota-
tion along front-back axis) value of the drone would be an abstract raw number
like -0.00030842. After considering the data points from the relevant timestamps
within a phase and processing it into a range, we would have a lower bound and
upper bound. We then used the Apriori algorithm to find transactions that hap-
pened frequently during each phase—in our experiments, across a total of 30
datasets (Section 4). The algorithm removes infrequent transactions, and uses a
minimum support threshold to retain frequent transactions. These transactions
are then translated into association rules which would eventually end up as our
rules for checking.
Universal Rules. Universal rules refer to the straightforward associations that
the algorithm picked up without any changes to the input parameters. These are
rules that hold throughout the missions without violation. As missions differ,
there are not many of these rules, and they mostly had to do with sensors such
as the GPS or Barometer. Barring any faults, these would have constant values
throughout a mission.



8 I. Tan et al.

Phase-specific Rules. Phase-specific rules refer to those that the algorithm
picked up for each of the specific phases only. These rules only hold throughout
that particular phase. After mining the phase rules, we observed that there were
some rules that might not necessarily hold true at all times in a phase due to
possible instabilities. This does not mean that they should not be rules though.
By setting a threshold of 99% (100% would be too rigid as there is the possibility
of slight deviations due to the volatile nature of drones), we were able to find
frequent relationships that held true except for certain minority data points. For
example, in a scenario where the expected throttle is between 0 and 80, but one
of the observations has a throttle value of 80.12. If not for this one data point,
the range would hold. Then, we would examine the minority points, to see if they
were negligible or explainable enough for us to still accept the rule or perhaps
modify it. In the case of the throttle, we modified the rule to incorporate this
value, as it was a negligible amount.
Domain-Specific Rules. We discussed with a few domain experts from the
drone industry and gathered some domain-specific rules, with respect to accept-
able latency between the remote controller issuing a command and the drone
acting upon it. For their specific use cases, drones are required to conduct long
range missions, where drones may be affected by conditions like signal inter-
ference and obstacles like buildings and trees, which may result in delays in
responding to the commands or signal lost. In such cases, since the drone may
be visually out of sight, it is difficult to determine whether there is an anomaly
or not. Even though the drone documentation may provide a specification of
distances where a drone can safely operate in, it is often not clear what would
be the acceptable latency. Therefore, we worked with the domain experts to con-
duct physical experiments with DJI drones and establish rules for determining
anomalous latency issues. For example, from our experiments, we observed that
the worst possible latency under normal circumstances is approximately 2 sec-
onds for the DJI drones we tested and any latency more than 2 seconds should
be considered an anomaly.
Unsupervised Learning. While rules can help us define boundaries to catch
anomalies that we expect, there are bound to be anomalies that our rules are
unable to catch. This is where unsupervised learning comes in to fill the gap,
allowing us to capture unexpected or unseen anomalies. Unsupervised learning
also focuses on patterns rather than domain-knowledge, complementary to the
rule-checking. We propose an ensemble of five models (K-Means, DBSCAN, OP-
TICS, LOF and SVM), to tap on their respective strengths to detect anomalies,
by using a majority vote approach.
Identifying Anomalies by Voting. We then propose a voting ensemble based
on the five models to finalise anomaly detection results, as each model has its
own strengths in terms of anomaly detection. This is later confirmed in Sec-
tion 4, where we observe that k-means is effective in detecting anomalies from
significantly more obvious anomalies, while SVM is effective for anomalies from
datasets which are not too severe. We use the majority vote as a decision maker
for whether a particular data point is deemed an anomaly or not.



Runtime Anomaly Detection for Drones: An Integrated Approach 9

Integrating Rules and Unsupervised Models. We combine rule-based and
unsupervised methods through a decision matrix, as shown in Table 2. At run-
time, both approaches independently check for anomalies. If an alert is triggered,
the user receives a specific explanation—either identifying the violated rule or
indicating that the unsupervised model has classified the point as anomalous.
Within a sliding window, voting is performed on a per-timestamp basis, with
each timestamp’s result treated independently. In practice, based on the drone
type, mission, and operator knowledge, alerts can be configured to trigger only
when the proportion of anomalous timestamps within the window exceeds a
specified threshold.

Table 2. Decision matrix for combining the two methods

Rule-Based Method Clustering Ensemble Method Decision
Rule(s) Broken Majority Voted as Anomaly Anomaly
No Rule(s) Broken Majority Voted as Anomaly Anomaly
Rule(s) Broken Majority Voted as Non-Anomaly Anomaly
No Rule(s) Broken Majority Voted as Non-Anomaly Non-Anomaly

4 Evaluation

In this section, we present the design and results of our experiments to assess the
efficacy of RADD at detecting anomalies at runtime. Our experiments are designed
to answer the following Research Questions (RQs):

– RQ1. How effective is our approach at detecting anomalies in drone missions?
– RQ2. Is there a requirement for both parts of the approach?
– RQ3. How does RADD compare against the state-of-the-art?
– RQ4. Are the results produced by RADD more interpretable?
– RQ5. Can RADD be deployed at runtime?

4.1 Datasets Used

Using the simulation environment mentioned in Section 2, we generated rep-
resentative datasets to train and validate our models, as well as datasets with
anomalies for evaluation of our approach. The datasets generated were designed
to cover a range of ‘normal’ drone logs with no anomalies (which acted as the
base of our training when evaluating our own validation datasets), as well as
logs that are representative of several types of anomalies, ranging from harsh
environmental conditions to different kinds of drone faults. Table 3 shows the
statistics of each dataset.
Base Dataset Generation. For the base datasets that we used in our models
for training, we used the Ardupilot autopilot software, along with pymavlink



10 I. Tan et al.

Table 3. Statistics of our datasets

Dataset #Entries Anomalies?
Base 450 No Anomalies
Random 278 No Anomalies
Windy I 674 Anomalous Winds
Windy II 424 Anomalous Winds
Actuator 470 Faulty actuator
Sensor I (Roll) 213 Faulty sensor
Sensor II (Baro) 356 Faulty sensor

protocol and Gazebo simulator to run missions and collect log data from the
drone missions. For the base dataset, we set four waypoints to complete a loop
(simulating a real mission, using the same ones every time), and had the drone
fly to each of them before returning to the origin.
Validation Datasets Generation. The simulations are configured differently
to make sure each of the validation datasets was not identical to the base dataset.
Some were created by injecting wind, engine faults, or manually injected sensor
faults either throughout the whole mission or at certain periods throughout
a mission. We then took note of when these faults were present, and labelled
these timestamps as anomalies in these datasets. We then extracted only the
anomalous segments of the missions to have a 100% anomalous dataset. We first
created validation datasets of random missions, which were created in scenarios
where we randomised the parameters such as the number of waypoints and
mission coordinates, to ensure that they were significantly different from the
datasets we used for training.
Simulating Harsh Environmental Conditions. We leveraged on the simu-
lator’s ability to simulate winds at user-desired speeds and directions. In cases
of sensor or actuator faults, instability would be caused in the drone for vari-
ous reasons. By applying a strong wind condition to the environment, we aimed
to recreate this instability caused by these faults, to create a reflective simula-
tion of them. These datasets had strong winds throughout the whole mission,
to simulate sensor or actuator faults throughout. For these missions, there are
severe instabilities throughout, and the drone did not manage to complete the
mission by returning to the origin. We also created another dataset with respect
to wind. As the strong wind that we simulated was too strong for the drone to
complete the mission, we lowered the wind speeds minimally (at around 25% of
the strong wind’s value) such that it could now do so. The instabilities caused
in this simulation would still affect the drone heavily, with the only difference
that the mission could be completed.
Simulating Actuator Faults. The simulator also had an option to cause faults
in the drone’s actuator. We could tweak a parameter, to have it only operating
at a certain capacity. By setting it to lower values, the drone would not even
be able to takeoff. We set the capacity to 0.7, which gave the drone enough to
carry out the mission, but with many instabilities along the way. As the value



Runtime Anomaly Detection for Drones: An Integrated Approach 11

Table 4. Overall anomaly detection rates achieved by RADD (%). Random dataset
contains no anomalies and therefore, we do not present Recall. All other datasets are
entirely anomalous and therefore, we do not present False Positives or Precision.

Recall False Positives
Random (No Anomalies) N.A 2.33

Windy I (Mission not Completed) 99.40 N.A
Windy II (Mission Completed) 96.93 N.A

Actuator 68.08 N.A
Sensor I (Roll) 100.0 N.A

Sensor II (Baro) 100.0 N.A
Crash 98.64 N.A

was set throughout the mission, the drone had instabilities throughout as well,
even during takeoff and landing.
Manual Injections to Simulate Sensor Failures. For these type of faults, we
simulated sensor failures using manual injection. In many cases, when a sensor is
faulty or malfunctioning, it will be ‘stuck’, and will only display a certain value.
A very common sensor fault involves values being stuck either at the minimum
or maximum possible value. To simulate this, we chose a random mission and set
one of the columns to its maximum possible value according to the simulator’s
documentation, and used the dataset as one with sensor failure. Specifically, we
set the ‘roll’ column to π, as that was the maximum possible value. We also
created another dataset where we assumed the barometer was broken, showing
0 at all times.
Hard Engine Failure Resulting in Crash. For the last type of fault, we
wanted to simulate a drone during a crash. Similar to the actuator faults men-
tioned above, this time, instead of tweaking the capacity parameter by a little
bit, we shut it off mid-flight to cause the drone to crash and not complete its mis-
sion. We then took the timestamps of when we injected the crash and extracted
that part of the dataset for analysis.

4.2 Results

Effectiveness of Anomaly Detection (RQ1). We applied RADD to the logs
within all of the aforementioned datasets, and present our results in Table 4.

For the various kinds of anomalies, our approach averaged an anomaly detec-
tion rate of 93.84%, rising above 96% for five of the faults. For actuator faults,
the rate is lower (68%), which we believe is because the throttle loss induced was
not severe enough to be detected as anomalous during all parts of the mission.
As for the other faults, they were severe enough to be almost fully detected. Par-
ticularly for Windy I, where the wind speeds were so strong that the drone was
unable to complete the mission based on the parameters and coordinates that
were set. Due to the strong winds, the drone was unstable throughout the mis-
sion, and ended up crashing eventually. These occurrences were severe enough
for RADD to almost fully detect them. In terms of false positives, RADD kept this



12 I. Tan et al.

Table 5. Anomaly detection rates of the rule-checking component only (%)

Recall False Positives
Random (No Anomalies) N.A 2.33

Windy I (Mission not Completed) 99.40 N.A
Windy II (Mission Completed) 96.93 N.A

Actuator 28.08 N.A
Sensor I (Roll) 100.0 N.A

Sensor II (Baro) 100.0 N.A
Crash 98.64 N.A

Table 6. Anomaly detection rates of individual models and the ensemble (%)
Ensemble Ensemble

K-Means DBSCAN OPTICS LOF SVM Recall False Positives
Random (No Anomalies) 0.0 0.58 0.0 87.13 15.2 N.A 0.58

Windy I (Mission not Completed) 55.34 3.1 76.56 97.03 84.42 75.07 N.A
Windy II (Mission Completed) 0.0 3.1 50.0 96.11 1.65 1.17 N.A

Actuator 59.78 0.85 74.89 99.57 75.1 64.25 N.A
Sensor I (Roll) 100.0 2.83 75.94 100.0 100.0 100.0 N.A

Sensor II (Baro) 0.0 0.84 24.43 69.66 3.65 2.52 N.A
Crash 91.89 20.2 0.0 98.6 91.89 91.89 N.A

down to 2.33%. We observed that the false positives were mostly isolated rows
rather than sustained sequences, which means that they can actually be elimi-
nated by having the system only alerting the operator when a sustained sequence
of a few points (according to a threshold) are anomalous. Usually, these isolated
rows could be due to the volatile nature of drones, where slight deviations or
drifts can occur which causes the particular point to be slightly different from its
neighbouring points. These detection and false positive rates suggest that RADD
may be suitable and practical for anomaly detection in drones.
Ablation Study (RQ2). To prove the effectiveness and need for our approach
to combine rules and unsupervised learning, we performed an ablation study,
where we isolated the methods and ran the experiment with them solely, to find
out the performance without the other method being involved.
Rule-checking. In terms of false positives, rule-checking alone fared well, with
a false positive rate of 2.33%. As for the various faults, it was able to detect
anomalies effectively for five of the faults, with only 28.08% for the Actuator
dataset, as the throttle loss induced was not severe enough to trigger any break-
ing of the rules, which resulted in most of the points not being regarded as
anomalies. More results can be seen in Table 5.
Unsupervised Learning. Table 6 shows the results for the unsupervised learn-
ing portion of the approach. In terms of false positives, unsupervised learning
alone fared very well, with a rate of only 0.58. Out of the five models, three had
very low scores for false positives, and with a voting ensemble, this percentage
was kept low. As for the anomaly detection rates for the various faults, the en-
semble had a generally good performance for four of them, but had very low
detection rates for Windy II and Sensor II specifically, which we elaborate on
below.



Runtime Anomaly Detection for Drones: An Integrated Approach 13

Windy I vs Windy II. In the scenario where we simulated heavy wind and
the drone eventually crashed, the winds were so strong that the drone failed to
complete its mission. Needless to say, these anomalies were caught almost fully
by the rule-checking, and mostly by the unsupervised learning. We investigated
and found that in the unsupervised learning check, the anomalies that were not
caught belonged to a certain period, where the drone was trying to go the wind,
and there were certain data points which were very similar in nature. Upon
comparison, we found that they were similar to the normal ‘On Mission’ data
points, which could be why they were not flagged out.

As for the scenario where the wind was heavy, but not heavy enough to
make the drone fail the mission, while rule-checking was able to flag out almost
all the anomalies, unsupervised learning had a very low percentage. This could
be because while there are instabilities now, they are constant instabilities, so
the models are still able to cluster the points, and the points are not different
enough to be recognised as anomalies.

A diagram depicting the two scenarios during takeoff can be seen in Figure 3.

Expected Takeoff Trajectory Actual Takeoff Trajectory due to Wind
Expected Takeoff Trajectory Actual Takeoff Trajectory due to Wind

WindyI WindyII

Fig. 3. Comparison between Windy I and Windy II

Actuator. For the scenario where we simulated actuator faults, unsupervised
learning performed a lot better than rule-checking. Upon investigation, we no-
ticed that this is because to simulate the actuator faults, we adjusted their
performance to 70%. This caused slight instabilities, but not enough for rules
to be broken. However, unsupervised learning was able to pick these instabil-
ities up. This scenario shows an example where anomalies are only caught by
unsupervised learning, and not by rule-checking.
Sensor (Roll). In this scenario, the Roll value was set to π. While it is a possible
value according to the documentation, it is unlikely that the Roll of a drone
will ever be that high. Thus, both our unsupervised learning and rule-checking
methods detected it at full accuracy.
Sensor (Baro). In this scenario, the Barometer status remained at 0 throughout
the entire mission. For the unsupervised learning model, this was not a significant
anomaly, as the absence of sudden changes made it difficult to detect—the model



14 I. Tan et al.

primarily identifies deviations rather than constant incorrect values. However,
our rule-based checking explicitly requires the Barometer status to be 1, allowing
it to successfully detect the anomaly in this case.
Crash. For the crash scenario, as the drone was spiraling towards crashing, the
instabilities were very obvious in most of the data points, explaining the high
accuracy for both methods.
Comparison to Baseline (RQ3). With respect to RQ3, we evaluated our
approach with a baseline comparison against the LSTM model used in Dron-
Lomaly [30]. Using the same implementation of LSTM, we compared the per-
formance with regards to our test datasets. Table 7 shows the performance of
the LSTM implementation, for 2, 2.5 and 3 standard deviations. Our approach
fared better for all the type of faults in terms of detecting anomalies, and was
able to achieve a lower false positive rate. In terms of cost, our approach also
fared better than LSTM, due to the lesser training time required. The amount
of data required for training was also significantly less than what was required
for LSTM, with some of our base datasets only having about 500 data points.

Table 7. Recall metrics for the DronLomaly LSTM detector

2σ 2.5σ 3σ RADD

Random (No Anomalies) 0.3784 0.1779 0.1301 0.0292
Windy I (Mission not Completed) 0.8352 0.0534 0.046 0.9940

Windy II (Mission Completed) 0.314 0.1362 0.0589 0.9693
Actuator 0.3662 0.3342 0.1572 0.6808

Sensor I (Roll) 1.0 1.0 1.0 1.0
Sensor II (Baro) 0.2643 0.1519 0.1038 1.0

Crash 0.9452 0.2577 0.0532 0.9864

Interpretability (RQ4). We designed a user study to evaluate the inter-
pretability of our approach, i.e. whether RADD allows drone operators to identify
what exactly is anomalous about the drone’s behaviour. We recruited 20 com-
puter science undergraduates with varying levels of experience in drone opera-
tions and data analysis. The participants were first given a briefing on drones,
their missions, and the various attributes and parameters that would be involved.
We did not, however, show examples of what anomalous data looked like. This
was to prevent them from forming ideas of what to look out for. Then, they
were presented with anomalous drone missions generated through our simula-
tions. They were then asked to assess and interpret the anomalies using both
results: from rules generated by RADD and from just raw data. Feedback indi-
cated that our approach was much easier to analyse (averaging a 6.6 out of 7
on the Likert scale compared to the 3.2 scored by the raw data, with 7 being
the easiest), with participants reporting a more intuitive understanding of the
anomalies. In terms of actually identifying the anomalies, using our approach, 18
of the 20 participants were able to accurately determine what what the anoma-
lous behaviour was. As for the raw data, only 3 participants were able to identify



Runtime Anomaly Detection for Drones: An Integrated Approach 15

the anomaly. This was achieved through the transparent presentation of rules
broken, which allowed users to identify anomalous behaviors more quickly and
confidently. In contrast, the raw data often required more time and led to un-
certainty in decision-making. The study highlights the potential of our approach
to enhance operational workflows by improving anomaly detection accuracy, es-
pecially in critical situations where swift identification of issues is essential to
maintaining drone safety and performance. More details of the study can be
found online2.

Deploying at Runtime (RQ5). To test runtime deployment of our approach,
we deployed it on a Raspberry Pi 4 Model B with 8 GB memory, which can actu-
ally be used to control/fly a drone. On the device, we then ran the approach and
predicted each observation entry in the random validation dataset, one at a time
to simulate an actual log pipeline feeding it data. As the predictions were being
made one at a time, we collected the time taken for each prediction for analysis.
The results for K-Means, DBSCAN, LOF and SVM can be seen in Figure 4. The
results for OPTICS can be seen in Figure 5. We can see that k-means, DBSCAN,
and LOF are very lightweight, taking about 10 milliseconds (0.01 seconds) for
each prediction on average, whereas LOF is a little bit heavier, taking about
20 milliseconds (0.02 seconds) for each prediction on average. OPTICS, on the
other hand, requires more time as it has to re-fit the training data along with
the new data to make a prediction. This makes the average timing significantly
higher than the rest, at about 1250 milliseconds (1.25 seconds). As for the rule
checking, the time in milliseconds was almost negligible. Adding all the timings
together, it would take about 1.3 seconds to analyse each data point. Taking
into account the amount of time it takes for a drone to actually crash to the
ground as well as how long it would take for the user to read an alert and make
a decision, this timing is reasonable for deployment at runtime.

Threats to Validity. (1) Lack of variety in simulator-generated datasets. As
the simulator has limited environment variables for us to experiment with, the
simulation data is not comprehensive enough to cover all possible real scenarios.
Many faults—such as those caused by human error, which can occur in countless
unpredictable ways—remain beyond our reach. As a result, while we can con-
fidently say that our simulations test certain aspects, we cannot generalise the
models to all possible fault conditions in drones. A potential mitigation strategy
for future work is to incorporate real-world flight log data and adapt it to create
more realistic, domain-specific scenarios.

(2) Running the analyses on raw data. We chose not to standardise the data
because the selected features—representing the drone’s position, speed, and an-
gles—are critical absolute values that are inherently sensitive to changes. Ap-
plying a scaler could have distorted these values and compromised their true
meaning, potentially affecting the accuracy of anomaly detection.

2 https://sites.google.com/view/raddstudy/home

https://sites.google.com/view/raddstudy/home


16 I. Tan et al.

Fig. 4. Boxplot of prediction times for unsupervised models

5 Related Work

Our study is closely related to anomaly detection for CPSs, which typically in-
volves profiling behaviours or patterns from observations such as sensor readings
and actuator outputs, and identifying those that differ significantly from the ex-
pected behaviour. In general, these approaches can be broadly categorised into
rule-based approaches, supervised learning-based approaches, and unsupervised
learning-based approaches.
Log-Based Defence Mechanisms for CPSs. Anomalies can be detected by
evaluating data points against rules (or invariants), in which expected relation-
ships between sensors and actuators are extracted from data sets [12], control
programs and the laws of physics [9], or alternatively, are defined based on a pri-
ori knowledge [4, 34]. To our knowledge, rules for detecting anomalies in drone
systems have not been explored. Therefore, in this work, we define some domain
specific rules for drones and also propose a rule mining algorithm on the drone
logs to automatically derive a specific rule set.

If labelled data is available, then supervised learning approaches like SVM
can be used to train a model that classifies new data points as normal or anoma-
lous [8]. However, it may be hard to gather labeled anomaly data, especially since
anomalies are often unknown or unpredictable for complex systems like CPSs. In
this case, unsupervised approaches like clustering [19], local outlier factor [16],
and one-class SVM [17] can be used to learn a decision boundary that encap-
sulates the normal data points. Clustering approaches have been reviewed by
Aghabozorgi et. al. [5] and Alqahtani et. al. [6]. According to these surveys,
there is a considerable focus on using clustering to detect patterns in CPSs,



Runtime Anomaly Detection for Drones: An Integrated Approach 17

Fig. 5. Boxplot of Prediction Times for OPTICS on Raspberry Pi

for example, for detecting spatial patterns in Silicon wafers [23], for detecting
machine wear and predictive maintenance [7], and for detecting anomalies in
traffic data [27]. Outlier detection algorithms such as One-Class SVM [25] and
Local Outlier Factor (LOF) [24] have also been applied for anomaly detection
on CPS log data and achieved promising results. But, to our knowledge, these
approaches have not been applied in the context of anomaly detection for drone
systems. A recent work [31] also focuses on the severity being a key factor in
separating critical anomalies and less severe ones. Drone anomalies might not
always be critical or severe, so this is an important motivation for us to consider
as well.

Deep learning approaches, in which neural networks learn the complex non-
linear patterns in data sets, can be used as time series predictors, with the
anomaly alarm raised when predicted physical states differ significantly from
the ones eventually observed. For example, in [11, 13, 20, 21], LSTM, RNN, and
CNN were used to detect anomalies or cyber attacks to industry control systems.
DronLomaly [30] has taken some first steps towards applying anomaly detection
techniques to drones, specifically, by utilising LSTM netural networks to predict
future sensor/actuator states and marking anomalies when the actually observed
states diverge. However, DronLomaly has the risk of overfitting to the training
data from sample flying logs as its model is trained from a specific mission log
and is used to detect anomalies when the drone is conducting the same mission.
Models must be able to generalise, as no two missions are the same: flying in an
open field is different to flying in a crowded city, not to mention the differences
that arise due to weather. Generally, deep learning approaches lack interpretabil-
ity. In the context of drone missions, this makes it difficult for drone operators
to understand the nature of an anomaly and decide what appropriate action to



18 I. Tan et al.

take, in time. Furthermore, drones are often required to satisfy properties that
are simple to define with domain knowledge such as acceptable latency, but may
not always be easily learnt from log data. These findings motivated us to explore
alternative anomaly detection approaches that overcome the specific challenges
for drones.
Defence and Analysis Techniques for Drones. In [22, 26, 28], forensics
frameworks for examining the drone’s activities via its logs, upon the occurrence
of an incident, have been presented. These approaches deal with after-the-fact
drone forensics analyses, e.g. to find evidence for the court of law. Drone-specific
fuzzing approaches such as PGFuzz [18] and LGDFuzzer [15] have been pro-
posed to detect bugs in drone control programs. These approaches execute a
given drone mission with perturbed drone control parameters and detect if the
drone violates safety constraints such as crashes. Such approaches are useful
at detecting input validation and semantic bugs in drone control programs but
are not designed for detecting anomalies such as sensor/actuator failures during
runtime.

There are also approaches for detecting cyber attacks on drones at runtime.
For example, [14] describes a Moving Target Defense approach focusing on com-
munication network security and intrusion detection, [35] proposes algorithms at
the network layer to secure wireless channels used in drones to ground communi-
cation in 5G networks, and [10] discusses anomaly detection techniques focusing
on distributed denial of service attacks in drone networks. [33] talked about com-
pilating the features and patterns of anomalies in drone logs. Our work in this
paper on log-based runtime detection of anomalies in drones can complement
such existing defence approaches which have been focusing more on the network
and communication layer of drone systems.

6 Conclusion and Future Work

This paper presents RADD, an anomaly detection approach for drones based on
the integration of rule-checking and unsupervised learning. The combination of
these methods allows RADD to generalise to a diversity of weather conditions and
scenarios, while ensuring that detected anomalies are also more interpretable
than those caught by deep neural networks. We have implemented RADD for the
ArduPilot drone software in the Gazebo simulator, mining 44 rules across five
derived mission phases, and training an ensemble of five unsupervised models.
We have evaluated RADD with various drone log datasets and found that it is
able to detect an average of 93.84% of anomalies over six types of faults (rising
to 99% for heavy wind and sensor faults) with a low false positive rate (2.33%),
and exceed the performance of a widely-used LSTM-based detector for drones.
Finally, in an ablation study we have observed that the integration of approaches
exceeds the performance of any one part, and that they are efficient enough to
be deployed as runtime checkers.

There are a number of interesting directions of future work. First, we would
like to explore whether the ensemble can be improved, e.g. by exploring weighted



Runtime Anomaly Detection for Drones: An Integrated Approach 19

voting mechanisms based on the level of ‘trust’ in individual models. Currently,
only a basic voting system is used, which can be improved to give us more in-
formation about the anomaly if weights were involved. Second, we would like to
extend the study to datasets in which multiple types of anomalies are happening
at once (or in an interleaved manner). Third, we want to explore incremental rule
updates during missions and their phases to adapt to unforeseen scenarios. Fi-
nally, we would be interested in exploring strategies for automatically recovering
from anomalies once they have been identified by RADD.

References

1. Simulator (ArduPilot Dev Team). https://ardupilot.org/dev/docs/
-simulator-software-in-the-loop.html (2025)

2. Ardupilot documentation. https://ardupilot.org/dev/docs (2025)
3. RADD repository. https://github.com/ivantanweihan/RADD (2025)
4. Adepu, S., Mathur, A.: Using process invariants to detect cyber attacks on a water

treatment system. In: SEC. IFIP Advances in Information and Communication
Technology, vol. 471, pp. 91–104. Springer (2016)

5. Aghabozorgi, S.R., Shirkhorshidi, A.S., Teh, Y.W.: Time-series clustering - A
decade review. Inf. Syst. 53, 16–38 (2015)

6. Alqahtani, A., Ali, M., Xie, X., Jones, M.W.: Deep time-series clustering: A review.
Electronics 10(23), 3001 (2021)

7. Amruthnath, N., Gupta, T.: A research study on unsupervised machine learning
algorithms for early fault detection in predictive maintenance. In: ICIEA. pp. 355–
361. IEEE (2018)

8. Chen, Y., Poskitt, C.M., Sun, J.: Learning from mutants: Using code mutation to
learn and monitor invariants of a cyber-physical system. In: IEEE Symposium on
Security and Privacy. pp. 648–660. IEEE Computer Society (2018)

9. Choi, H., Lee, W., Aafer, Y., Fei, F., Tu, Z., Zhang, X., Xu, D., Deng, X.: Detecting
attacks against robotic vehicles: A control invariant approach. In: CCS. pp. 801–
816. ACM (2018)

10. Condomines, J.P., Zhang, R., Larrieu, N.: Network intrusion detection system for
uav ad-hoc communication: From methodology design to real test validation. Ad
Hoc Networks 90, 101759 (2019)

11. Feng, C., Li, T., Chana, D.: Multi-level anomaly detection in industrial control
systems via package signatures and LSTM networks. In: DSN. pp. 261–272. IEEE
Computer Society (2017)

12. Feng, C., Palleti, V.R., Mathur, A., Chana, D.: A systematic framework to gener-
ate invariants for anomaly detection in industrial control systems. In: NDSS. The
Internet Society (2019)

13. Goh, J., Adepu, S., Tan, M., Lee, Z.S.: Anomaly detection in cyber physical systems
using recurrent neural networks. In: HASE. pp. 140–145. IEEE Computer Society
(2017)

14. Gudla, C., Rana, M.S., Sung, A.H.: Defense techniques against cyber attacks on
unmanned aerial vehicles. In: ESCS. pp. 110–116 (2018)

15. Han, R., Yang, C., Ma, S., Ma, J., Sun, C., Li, J., Bertino, E.: Control parame-
ters considered harmful: Detecting range specification bugs in drone configuration
modules via learning-guided search. In: ICSE. pp. 462–473. ACM (2022)

https://ardupilot.org/dev/docs/-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs
https://github.com/ivantanweihan/RADD


20 I. Tan et al.

16. Harada, Y., Yamagata, Y., Mizuno, O., Choi, E.: Log-based anomaly detection of
CPS using a statistical method. In: IWESEP. pp. 1–6. IEEE Computer Society
(2017)

17. Inoue, J., Yamagata, Y., Chen, Y., Poskitt, C.M., Sun, J.: Anomaly detection for
a water treatment system using unsupervised machine learning. In: ICDM Work-
shops. pp. 1058–1065. IEEE Computer Society (2017)

18. Kim, H., Ozmen, M.O., Bianchi, A., Celik, Z.B., Xu, D.: PGFUZZ: Policy-guided
fuzzing for robotic vehicles. In: NDSS. The Internet Society (2021)

19. Kiss, I., Genge, B., Haller, P.: A clustering-based approach to detect cyber attacks
in process control systems. In: INDIN. pp. 142–148. IEEE (2015)

20. Kravchik, M., Shabtai, A.: Detecting cyber attacks in industrial control systems
using convolutional neural networks. In: CPS-SPC@CCS. pp. 72–83. ACM (2018)

21. Kravchik, M., Shabtai, A.: Efficient cyber attack detection in industrial control
systems using lightweight neural networks and PCA. IEEE Trans. Dependable
Secur. Comput. 19(4), 2179–2197 (2022)

22. Kumar, R., Agrawal, A.K.: Drone GPS data analysis for flight path reconstruction:
A study on DJI, Parrot & Yuneec make drones. Forensic Science International:
Digital Investigation 38, 301182 (2021)

23. Liukkonen, M., Hiltunen, Y.: Recognition of systematic spatial patterns in silicon
wafers based on SOM and k-means. IFAC-PapersOnLine 51(2), 439–444 (2018)

24. Ma, M.X., Ngan, H.Y., Liu, W.: Density-based outlier detection by local outlier
factor on largescale traffic data. Electronic Imaging 2016(14), 1–4 (2016)

25. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. J. Mach.
Learn. Res. 2, 139–154 (2001)

26. Mekala, S.H., Baig, Z.A.: Digital forensics for drone data - intelligent clustering us-
ing self organising maps. In: FNSS. Communications in Computer and Information
Science, vol. 1113, pp. 172–189. Springer (2019)

27. Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering.
In: GI/ITG Workshop MMBnet. vol. 7 (2007)

28. Renduchintala, A.L.S., Albehadili, A., Javaid, A.Y.: Drone forensics: digital flight
log examination framework for micro drones. In: CSCI. pp. 91–96. IEEE (2017)

29. Shankland, S.: Facebook drone investigation: Wind gust led to
broken wing. https://www.cnet.com/tech/services-and-software/
facebook-drone-investigation-wind-gust-led-to-broken-wing (2016)

30. Shar, L.K., Minn, W., Duong, T.N.B., Fan, J., Jiang, L., Kiat, D.L.W.: DronLo-
maly: Runtime detection of anomalous drone behaviors via log analysis and deep
learning. In: APSEC. pp. 119–128. IEEE (2022)

31. Silalahi, S., Ahmad, T., Studiawan, H., Anthi, E., Williams, L.: Severity-oriented
multiclass drone flight logs anomaly detection. IEEE Access (2024)

32. Son, Y., Shin, H., Kim, D., Park, Y., Noh, J., Choi, K., Choi, J., Kim, Y.: Rock-
ing drones with intentional sound noise on gyroscopic sensors. In: 24th USENIX
Security Symposium (USENIX Security 15). pp. 881–896 (2015)

33. Wang, D., Li, S., Xiao, G., Liu, Y., Sui, Y., He, P., Lyu, M.R.: An exploratory
investigation of log anomalies in unmanned aerial vehicles. In: ICSE. pp. 210:1–
210:13. ACM (2024)

34. Yoong, C.H., Palleti, V.R., Maiti, R.R., Silva, A., Poskitt, C.M.: Deriving invariant
checkers for critical infrastructure using axiomatic design principles. Cybersecur.
4(1), 6 (2021)

35. Zhang, G., Wu, Q., Cui, M., Zhang, R.: Securing UAV communications via joint
trajectory and power control. IEEE Trans. Wirel. Commun. 18(2), 1376–1389
(2019)

https://www.cnet.com/tech/services-and-software/facebook-drone-investigation-wind-gust-led-to-broken-wing
https://www.cnet.com/tech/services-and-software/facebook-drone-investigation-wind-gust-led-to-broken-wing

	Runtime Anomaly Detection for Drones: An Integrated Rule-Mining and Unsupervised-Learning Approach

